The work done by a gas molecule in an isolated system is given by,

$$W = \alpha \beta^2 e^{-\frac{x^2}{\alpha kT}}$$

where x is the displacement, k is the Boltzmann constant and T is the temperature, α and β are constants. Then the dimension of β will be :

- (1) $[M L^2 T^{-2}]$
- (2) $[MLT^{-2}]$
- (3) $[M^2 L T^2]$
- (4) $[M^0 L T^0]$

(b) $\frac{x^2}{\alpha kT} \rightarrow \text{dimensionless}$

$$\Rightarrow [\alpha] = \frac{[x^2]}{[kT]} = \frac{L^2}{ML^2T^{-2}} = M^{-1}T^2$$

Now, $[W] = [\alpha] [\beta]^2$

$$[\beta]^2 = \frac{[W]}{[\alpha]}$$

$$[\beta] = \left(\frac{ML^2T^{-2}}{M^{-1}T^2}\right)^{\frac{1}{2}} = MLT^{-2}$$